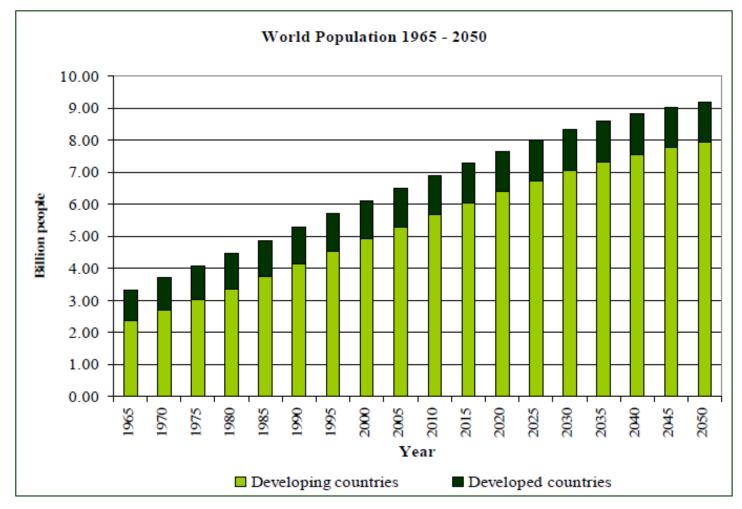
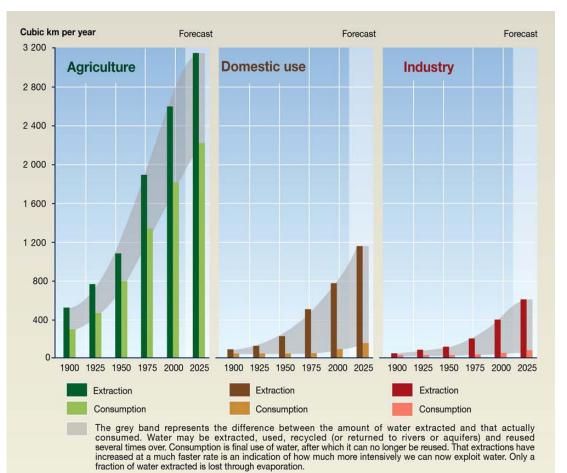
6th THAICID NATIONAL SYMPOSIUM

แนวคิดในการบริหารจัดการน้ำสำหรับข้าว ในประเทศไทยโดยอาศัยหลักการวอเตอร์ฟุตพริ้นท์


Water Management for Rice Production in Thailand based on the Concept of Water Footprint

Adisorn Champathong¹ Somsak Vivithkeyoonvong² Kosit Lorsirirat³ Sirapob Tanmanee⁴ Somkid Sapaokum⁵ Pitakpong Tibkaew⁶ Royal Irrigation Department^{1,2,3,4,5,6}

21 June 2011


Background of Water Footprint

World population growth:

Source: Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat (2007)

Trends in global water use by sector

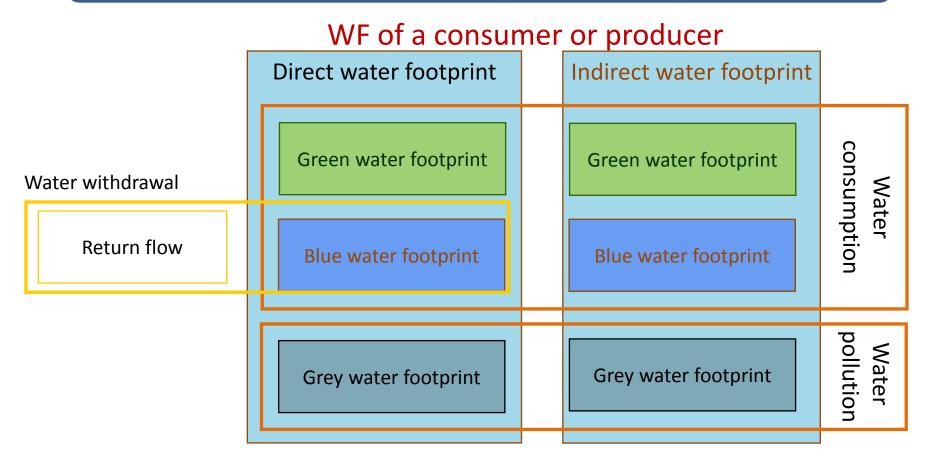
Source: Igor A. Shiklomanov, State Hydrological Institute (SHI, St. Petersburg) and United Nations Educational, Scientific and Cultural Organisation (UNESCO, Paris), 1999.

Source: UNEP (2008)

Drought

Water pollution

Introduction of Water Footprint


What is Water Footprint ?

Water Footprint: An indicator of freshwater use, which considers in both direct and indirect water use of a consumer or producer.

- It refers water volume used,
- where the WF is located
- what source of water is used
- when the water is used.

Components of Water Footprint

Green WF : Volume of rainwater consumed during the production = CWU_{green} / Y

- Blue WF : Volume of surface and groundwater consumed as a result of the production of a good or service = CWU_{blue} / Y
- **Grey WF** : Volume of freshwater required to assimilate the load of pollutants = $(\alpha AR)/(Cmax-Cnat)/Y$

[Hoekstra et al., 2011]

What advantages of Water footprint? A strong tool for WM

- Improvement of water management (WM) by:
 - decreasing water demand: water saving in HH
 - improving the efficiency of water use (water recycle)
- Concentrate more about water depletion or pollution through imported products (water used, leaching)
- Awareness raising, policy formulation

Source: Schreier *et al., 2007, Hoekstra et al. 2011*

Sorts of WF

Consumer

Product (ΣWF process steps) Ex. Rice, wheat, meat (ΣWF all products consumed) Ex. Individual

Within a geographically delineated area (ΣWF all processes in the area) Ex. Guadiana River basin (Spain)

Business (ΣWF final products produced) Ex. Coca-Cola, Nestle Community (ΣWF its members) Ex. Provinces of Indonesia

National consumption (ΣWF its inhabitans) Ex. Netherlands, Spain, India

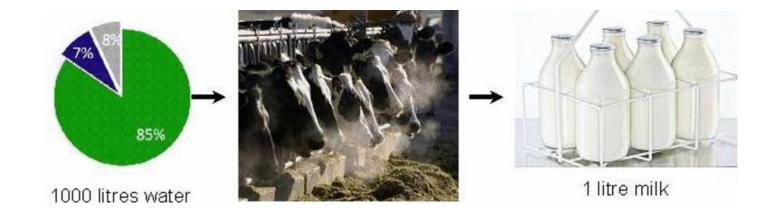
WF Partnership

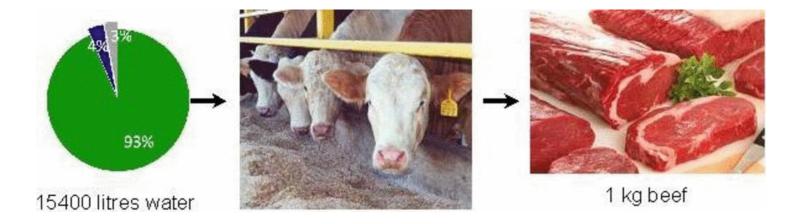
PEPSICO

Water Management Institute

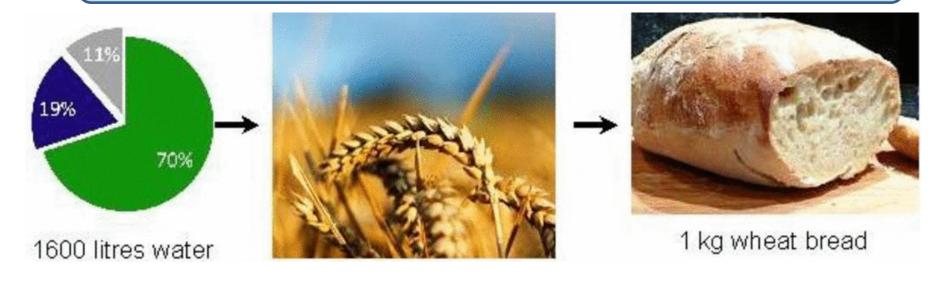
UNIVERSITY OF TWENTE.

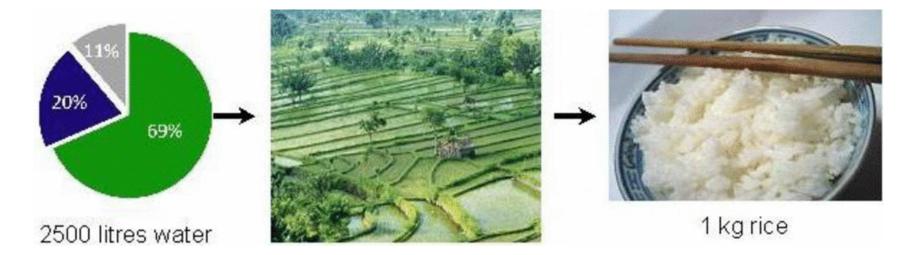
Water labels


Elovena Oat Flake (Raisio, Finland) May 2009



Steam shower


http://www.waterrating.gov.au/consum ers/index.html


Water footprint of products

Water footprint of products

Source: http://www.waterfootprint.org

Water Footprint of Paddy Rice

Table 5: WF and percolation per unit of paddy rice produced (m³/ton) in the 13 major rice –producing countries during 2000-2004

		Water footprint				Percolation		
Country	Green	Blue	Grey	Total	Rain water	Irrigation water	Total	
China	367	487	117	971	338	448	785	
India	1077	826	116	2020	794	609	1403	
Indonesia	583	487	118	1187	505	422	927	
Bangladesh	549	577	103	1228	550	578	1128	
Viet Nam	308	203	127	638	420	277	697	
Thailand	942	559	116	1617	787	467	1253	
Myanmar	846	378	50	1274	763	341	1103	
Japan	341	401	61	802	348	409	757	
Philippines	844	423	78	1345	775	388	1163	
Brazil	791	670	61	1521	691	585	1276	
USA	227	835	101	1163	141	5 17	658	
Korea, Rep.	356	388	84	829	303	331	634	
Pakistan	421	2364	88	2874	248	1394	1642	

Source: Chapagain et al. (2010b)

Statistics for the 13 largest rice producing countries during 2000-2004

		-		-	
Country	Average production (ton/yr)*	Global share (%)*	Average area harvested (ha/yr)*	Average yield (ton/ha)*	
China	177,657,605	30.0%	28,670,030	6.19	
India	126,503,280	21.4%	43,057,460	2.93	[]
Indonesia	52,014,913	8.8%	11,642,899	4.47	Vietnam
Bangladesh	37,217,379	6.3%	10,641,271	3.50	A=47x10 ⁶ rai
Viet Nam	33,960,560	5.7%	7,512,160	4.52	Y=723 kg/rai
Thailand	26,800,046	4.5%	10,038,180	2.67	
Myanmar	22,581,828	3.8%	6,431,364	3.51	Thailand
Philippines	13,322,327	2.3%	4,056,577	3.28	A=62.7x10 ⁶ rai
Brazil	11,068,502	1.9%	3,371,562	3.28	Y=416 kg/rai
Japan	10,989,200	1.9%	1,706,000	6.44	
USA	9,520,015	1.6%	1,285,671	7.40	
Pakistan	6,910,650	1.2%	2,339,200	2.95	
Korea, Rep.	6,808,450	1.2%	1,045,173	6.51	
Sub total	535,354,755	90.5%	131,797,547	-	Global
Global total	591,751,209	100%	150,666,851	4.49 <	A=942x10 ⁶ rai
* Source: FAO	Y=718 kg/rai				

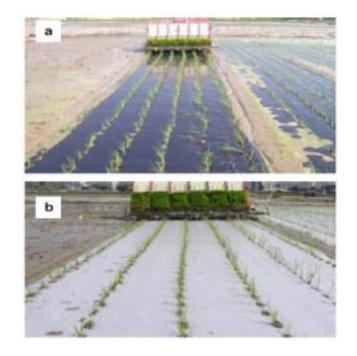

** Average fertilizer use in rice cultivation. Source: IFA et al. (2002).

Top-15 of countries with the largest WF of rice consumption during 2000-2004

	Total water footprint (Mm ³ /yr).				Water footprint per capita
	Green	Blue	Grey	Total	(m³/cap/yr)
India	133,494	102,425	14,385	250,305	239
China	65,154	86,050	20,680	171,884	134
Indonesia	31,097	26,005	6,262	63,364	299
Bangladesh	20,560	21,574	3,846	45,980	317
Thailand	19,640	11,654	2,421	33,714	547
Myanmar	18,989	8,483	1,118	28,591	612
Viet Nam	9,860	6,496	4,074	20,430	256
Philippines	11,736	6,020	1,137	18,893	238
Brazil	9,186	7,869	757	17,812	99
Pakistan	2,480	13,935	521	16,936	117
Japan	4,084	4,923	748	9,755	77
USA	1,924	5,779	719	δ,422	29
Egypt	3,467	3,203	599	7,269	105
Nigeria	3,478	3,005	548	7,031	54
Korea, R	2,491	2,732	592	5,814	122

Source: Chapagain et al. (2010b)

National water loss related to the net rice export of Thailand (1997–2001)


Source: Chapagain et al. (2006)

Options to reduce WF

Measure to reduce WF

- Options for crop farmers to reduce their WF
 - Reduce Green WF in crop growths
 - Increase land productivity (yield, kg/rai) by improving agricultural practice
 - Mulching of the soil (for reducing evaporation from soil surface)

Rice seeding transplanting in the black film and paper mulching treatment (Suwon, Korea)

– Reduce Blue WF in crop growths

- Shift to an irrigation technique with lower evaporation loss e.g. pipe system, micro irrigation
- Improve the irrigation schedule by optimizing timing and volumes of application

Water-Less Rice

Measure to reduce WF

-Reduce Grey WF in crop growths

- Apply less or no chemicals (artificial fertilizers, pesticides) e.g. Organic farming
- Apply fertilizers or compost in form that allows easy uptake (Need less leaching & runoff): ปุ๋ยหมัก ชีวภาพ
- Optimize the timing and technique of adding chemicals (Need less leaching & runoff

Measure to reduce WF

- Options for Gov. to reduce WF (national agri. policy)
 - Include the goal of sustainable use of available domestic
 WR in formulating national food security policy
 - Support investments in Irg. Systems & techniques that conserve water: Pipe system, Micro irrigation
 - Promote farmers to reduce the use of chemical fertilizers, pesticides, & insecticides
 - Promote WF reduction in Agri. e.g. awareness raising, subsidies for Irg. Techniques.

Source: Hoekstra et al. (2011)

www.waterfootprint.org

🖉 🗢 🍸 http://www.waterfo	otprint.org/?page=files/home			👻 😽 🗙 🚼 Google	م
Favorites 🦿 Waterfootprint.or	rg: Water footprint and virtual w				
-	Water Footp	rint	Water Footprint		
Introduction		[Arabic] [Chinese] [Dutch] [Fr	rench] [German] [Italian] [Spanish] [Turkish]		
Agenda About WFN Product Water Footprints rour Water Footprint National Water Footprints Corporate Water Footprints	paper, cotton clothes, etc. The water water use of a consumer or producer	erlands, is looking for a new postdo n: June 30. <u>Read more</u> . , cooking and washing, but even r footprint is an indicator of water u r. The water footprint of an individu is used to produce the goods and	to to strengthen their water footprint more for producing things such as food, ise that looks at both direct and indirect ial, community or business is defined as services consumed by the individual or		
Global Water Footprint Training Materials Publications WaterStat Database Glossary FAQ Links Contact	The Global Water Footprint Standard is contained in the Water Footprint Assessment Manual	Standard The Global Water Footprint Standard of Footprint Network, its 130 partners, an Netherlands has garnered internation: policymakers, NGOs and scientists as ever increasing water problems. "The Global Water Footprint Standard sectors are awakening to the risk that reputations. This work helps compani- on water resources, and offers guidan water for industry, communities and m: Jim Leape, Director General, WWF In "Water footprint assessments are help efforts because they provide a tool to n throughout our supply chain. [] A con footprints, as the Water Footprint Netw toward stewardship of this critical, sha Greg Koch, Managing Director, Global Company	s an important step toward solving the world's comes at a time when companies in all water scarcity poses to their bottom lines and es understand their dependency and impact ice on response strategies that conserve ature." ternational oful in supporting our water stewardship measure and understand water use mmon, standard tool for assessing water vork provides, is critical as businesses work ared resource" I Water Stewardship, The Coca-Cola		
	Download the manual.	water footprint. Evaluations of the wate Agencies get a better idea of water sca water and food security."	delines to all Basin Agencies to evaluate the r footprint in Spain are helping Basin arcity in Spain and are helping us rethink tural Economics, Technical University of		

References

- Chapagain *et al.* (2006). Water saving through international trade of agricultural products
- Chapagain, A.K., Hoekstra, A.Y.(2010a). The Blue, Green and Grey Water Footprint of rice from production and consumption perspectives. Ecological Economics.
- Chapagain, A.K., & Hoekstra, A.Y. (2010b). The green, blue and grey water footprint
 - of rice from both a production and consumption perspective: Value of water research report series no.40. UNESCO-IHE
- Hoekstra, A.Y., Chapagain A.K., Aldaya, M.M., and Mekonnen, M.M. (2009). Water footprint manual: State of the art 2009. Enschede, The Netherland
- Hoekstra, A.Y., Chapagain A.K., Aldaya, M.M., and Mekonnen, M.M. (2011). The Water Footprint Assessment Manual. Setting the Global Standard. Earthscan, London.
- Jeon WT, et al. (2011) Effects of green manure crops and mulching technology on reduction in herbicide and fertilizer use during rice cultivation in Korea

Thank you for your attention!

For Q&A

Terminology

Water footprint – The water footprint is an indicator of freshwater use that looks at both direct and indirect water use of a consumer or producer. The water footprint of an individual, community or business is defined as the total volume of freshwater that is used to produce the goods and services consumed by the individual or community or produced by the business. Water use is measured in terms of water volumes consumed (evaporated) and/or polluted per unit of time. A water footprint can be calculated for a particular product, for any well-defined group of consumers (e.g. an individual, family, village, city, province, state or nation) or producers (e.g. a public organization, private enterprise or economic sector). The water footprint is a geographically explicit indicator, not only showing volumes of water use and pollution, but also the locations.

- **Direct WF of a consumer or producer :** The freshwater consumption and pollution that is associated to the water use by the consumer or producer. It is distinct from the indirect water footprint, which refers to the water consumption and pollution that can be associated with the production of the goods and services consumed by the consumer or the inputs used by the producer.
- Indirect WF of a consumer or producer: The freshwater consumption and pollution 'behind' products being consumed or produced. It is equal to the sum of the water footprints of all products consumed by the consumer or of all (non-water) inputs used by the Producer.

Virtual-water content – The virtual-water content of a product is the freshwater 'embodied' in the product, not in real sense, but in virtual sense. It refers to the volume of water consumed or polluted for producing the product, measured over its full production chain. If a nation exports/imports such a product, it exports/imports water in virtual form. The 'virtual-water content of a product' is the same as 'the water footprint of a product', but the former refers to the water volume embodied in the product alone, while the latter term refers to that volume, but also to which sort of water is being used and to when and where that water is being used. The water footprint of a product is thus a multidimensional indicator, whereas virtual-water content refers to a volume alone.

WF of national consumption

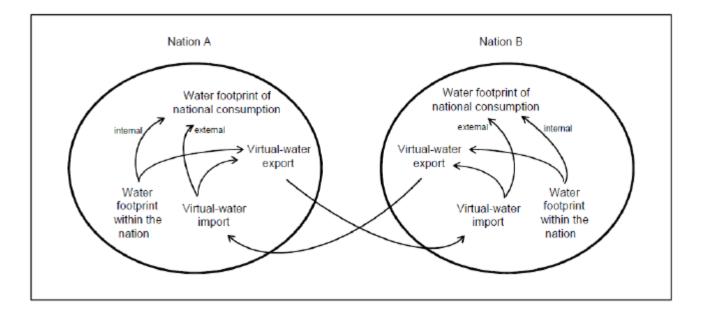
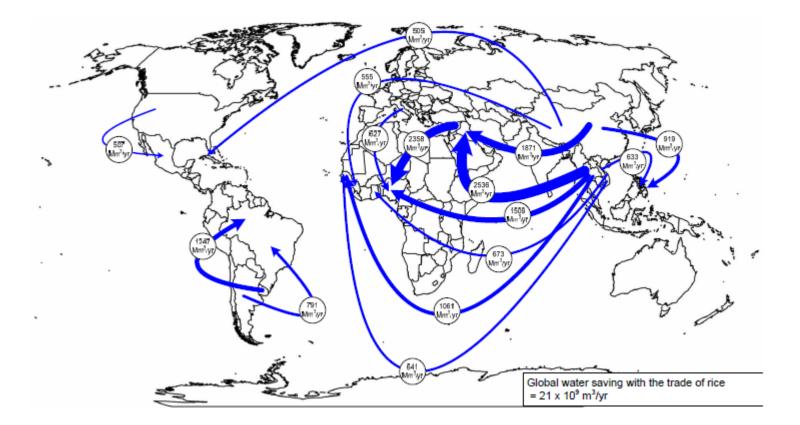
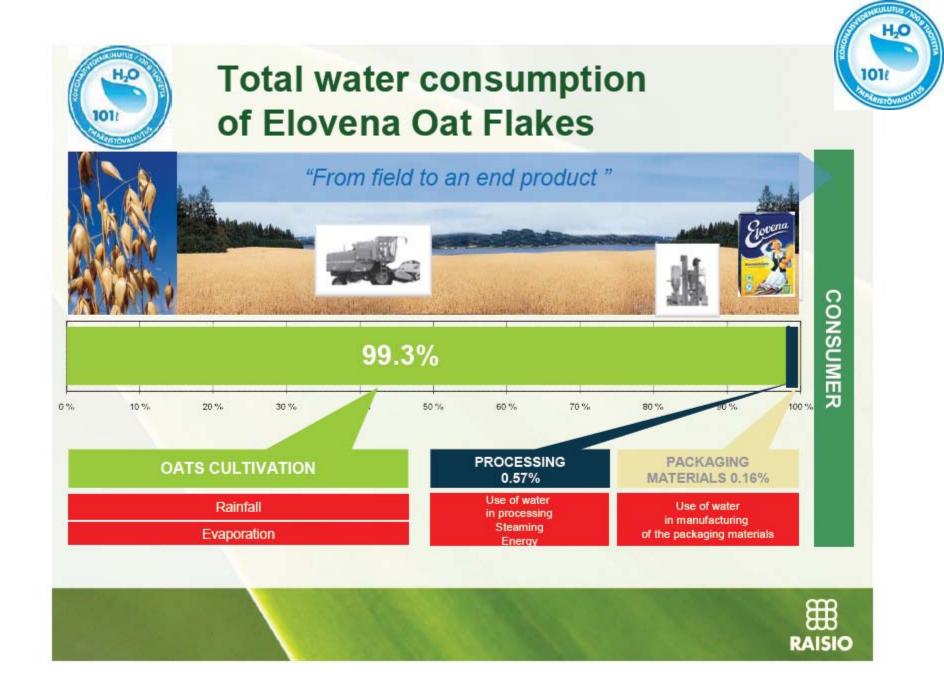
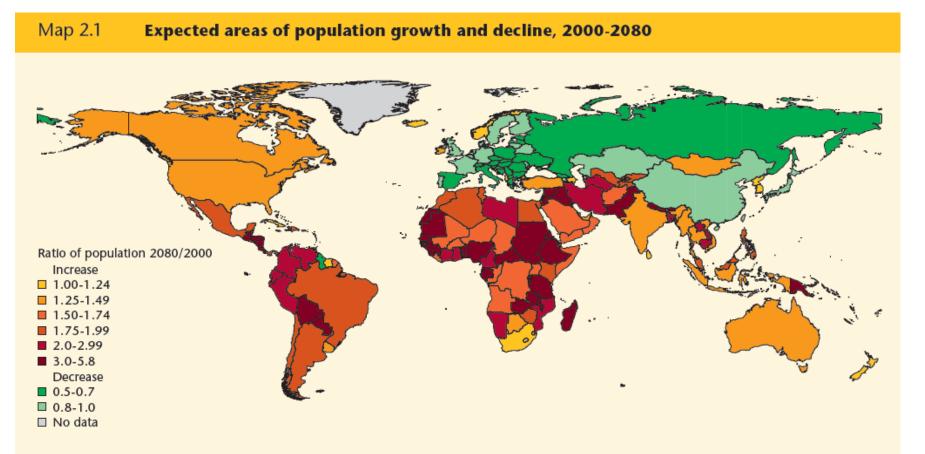





Fig.1 The relation between the water footprint of national consumption and the water footprint within a nation in a simplified example for two trading nations Source: Hoekstra *et al.* (2009)

Virtual water trade of Rice

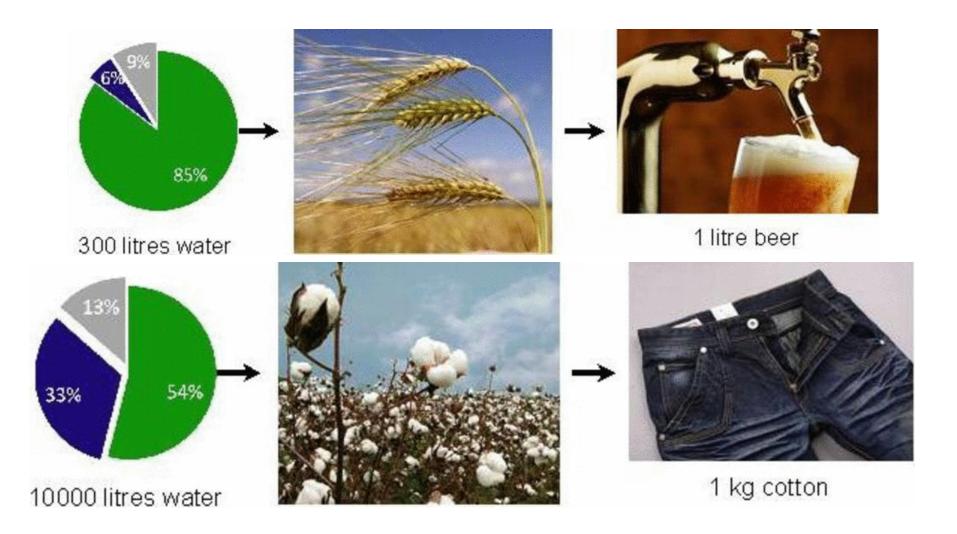
Source: Lutz, Sanderson, and Scherbov 2008.

CDM

Virtual Water – A World View of Sustainability James J. Pescatore, P.E., BCEE NEWWA Annual Conference September 19, 2009

Water vs. Virtual Water

 Direct Water Use


 Drinking, Washing, Flushing Toilets, Watering Lawns

Indirect "Virtual" Water Use

- Irrigating crops,
- Watering livestock
- Water used in the Production
 - of Leather, Paper, Cotton,

Manufactured Goods etc.

- Ecological Footprint (Wackernagel & Rees, 1996) Def.: human pressure on the planet in terms of the aggregate demand that resource-consumption and CO₂ emissions places on ecological assets.
- <u>Water Footprint</u> (Hoekstra, 2002)

Def.: human appropriation of natural capital in terms of the total freshwater volume required (blue, green, grey) for human consumption.

 <u>Carbon Footprint</u> (multiple authors, ~2000 / 2008)
 Def.: human pressure on the planet in terms of the total GHG emissions (associated with an activity or accumulated over the life stages of a product) and human contribution to climate change.

ECOLOGICAL FOOTPRINT	CARBON FOOTPRINT	WATER FOOTPRINT
 Temporally explicit and multi- dimensional indicator that can be applied to single products, cities, regions, nations and the whole biosphere. 	 Multi-dimensional indicator that can be applied to products, processes, companies, industry sectors, individuals, governments, populations, etc. 	 Geographically explicit and multi-dimensional indicator: calculated for products, organizations, sectors, individuals, cities and nations.
 More than 200 countries for the period 1961-2007 are tracked (Ewing et al., 2010). 	 73 nations and 14 regions for the year 2001 only are tracked (Hertwich and Peters, 2009). 	 140 nations for the period 1997-2001 (Chapagain and Hoekstra, 2004).
 It has a consumption-based point of view and thus considers trade. 	 It has a consumption-based point of view and thus considers trade. 	 It has a consumption-based approach and considers trade.
		one planet economy network

Table 10 Options for crop farmers to reduce their water footprint

Reduce green water footprint in crop growth

Increase land productivity (yield, ton/ha) in rain-fed agriculture by improving
agricultural practice; since the rain on the field remains the same, water
productivity (ton/m³) will increase and the green water footprint (m³/ton) will
reduce.

• Mulching of the soil, thus reducing evaporation from the soil surface Reduce blue water footprint in crop growth

- Shift to an irrigation technique with lower evaporation loss.
- Choose another crop or crop variety that better fits the regional climate, so needs less irrigation water.
- Increase blue water productivity (ton/m3) instead of maximizing land productivity (yield, ton/ha)
- Improve the irrigation schedule by optimizing timing and volumes of application.
- Irrigate less (deficit irrigation or supplementary irrigation) or not at all.
- Reduce evaporation losses from water storage in reservoirs and from the water distribution systems.

Reduce grey water footprint in crop growth

- Apply less or no chemicals (artificial fertilizers, pesticides), for example, organic farming.
- Apply fertilizers or compost in a form that allows easy uptake, so that leaching and run-off are reduced.
- Optimize the timing and technique of adding chemicals, so that less is needed and/or less leaches or runs off.

Source: Hoekstra et al. (2011)

Table 11 Options for governments to reduce water footprints relevant to national agricultural policy

 Include the goal of sustainable use of available domestic water resources in formulating national food security policy.

Do not subsidize water-intensive agriculture in water-scarce areas.

 Promote crops that are suitable and adapted to the local climate in order to reduce irrigation demand.

Support investments in irrigation systems and techniques that conserve water.

 Promote farmers to avoid or reduce the use of fertilizers, pesticides and insecticides or better apply so that less chemicals reach the water system.

Promote water footprint reduction in agriculture – see Table 10. This
can be done in various alternative or complementary ways: regulation or
legislation (for example, on license, quota, full-cost water pricing, tradable
water use permits, subsidies for specific irrigation techniques, compulsory
water metering, awareness-raising.

Source: Hoekstra et al. (2011)