

Inflow calculation for on-farm ponds in northeast Thailand

Vichai Sriboonlue
Natchaya Khetkratok
Kewaree Polkern

Groundwater Research Center and Faculty of Engineering Khon Kaen University

Northeast, Thailand

- More than 85 % of agricultural land is rainfed agriculture
- Erroneous rainfall pattern
- > Unfertile soil-sandy texture
- อุบลราชธานี > Poor farmers.

On-farm pond

> the most suitable technology for water harvesting

- collecting rain water in rain season and use in dry season
- easily construction
- environmentally sound
- > economically sufficient

Benefit from on-farm is several. Such as upland crops and horticulture

Irrigation supplementary

Fisheries

Number of on-farm ponds in northeast is tremendous

increasing rapidly

> only one third are fully utilized

the rest are inefficient or even useless

Number of on-farm ponds is tremendous

Amount of inflow is very critical for usability and sustainability

- > too much inflow
 - can damage the pond by erosion
 - increase silting and sediment deposition
- > too small inflow
 - not enough water for utilization

Not enough inflow makes the pond useless

Too much inflow damage the pond

Our objective is to study inflow to on-farm pond

- Inflow into a pond is a function of
 - precipitation
 - catchment characteristics

Two types of on-farm ponds

Dammed pond

To build a dam across a valley

- ♦ cheaper, easier to manage
- ♦ difficult to find suitable place

Dug-out pond

To dig a pit, add embankment, and equipped with inlet and/or outlet facilities.

- ♦ suitable for flat area
- more popular in the Northeast

Hydrologic concepts

- **♦**catchment runoff
- **♦**groundwater inflow

The ponds lose water during dry season through

- water usage
- ♦ evaporation
- ♦ seepage loss

Site selection

- Two on-farm ponds were selected near Ban Wang Wa about 20 km south of Khon Kaen city.
- The two ponds are near by each other
 Image: The two ponds are near by each other
 Image: the North pond and the South pond
 Image: white output is a structure of the south pond of the south pond
 Image: the two ponds are near by each other
 Image: the two ponds are near by each other
 Image: two ponds are neach other
 Image: two ponds are near by each o

Equipments installation

- > Weather station
- Piezometers with water table recorders
- Pond water level recorders
- V-notch weir with a water level recorder for inflow measurement

Plan view of the equipments

Surface water measurement

Set up equipments

Catchment areas of the two ponds

To compare two methods of inflow calculation

Watershed routing

~ using the concept of outflow from a catchment varies nonlinearly with storage

- Synthetic unit hydrograph
 - Unit hydrograph is direct runoff hydrograph causing by 1 cm of rainfall of specific duration
 - ~ Synthetic unit hydrograph to be constructed from catchment characteristics

Watershed routing technique

Assuming that outflow varies linearly with storage

$$s = kq$$

At two time steps t_1 and t_2 , we obtain

$$q_2 = \frac{k - 0.5\Delta t}{k + 0.5\Delta t}q_1 + \frac{\Delta t}{k + 0.5\Delta t}i$$

That is by knowing q_1 , Δt , and i then q_2 can be estimated.

Synthetic unit hydrograph for small watershed

Assuming unit hydrograph shape follows

Probability distribution function of gamma function

as

$$u = u_p[(t/t_p)exp(1-(t/t_p))]^{n-1}$$

where $n = f(C_p)$

From unit hydrograph and rainfall we obtain inflow hydrograph

We compare the two techniques

> watershed routing

synthetic unit hydrograph

to the data of rainfall and inflow into the two on-farm ponds for the events of 30 Aug 06, 17 Sep 06, and 19 Sep 06

Comparison results for 30 Aug 06

Comparison results for 17 Sep 06

Comparison results for 19 Sep 06

Suitable values of k for watershed routing and C_p for unit hydrograph

	North pond		South pond	
Rainfall event	k	C _p	k	C _p
30 August 2006	0.6	0.65	0.55	0.98
17 September 2006	1.2	0.26	2.8	0.26
19 September 2006	1.1	0.37	0.9	0.33

Variations in k and Cp show nonlinearity in the rainfall-runoff systems

Conclusions

Variation in Cp is less than in k

Unit hydrograph technique gives better agreement with the data than watershed routing technique in peak discharge and runoff volume

Appropriate value for Cp is 0.4 - 0.6 for Khon Kean area